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Abstract

A linear stability analysis determining the onset of convection in a bounded rectangular cavity containing a fluid-

saturated porous medium is performed for insulated sidewalls, isothermal top wall, and bottom wall heated by forced

convection. The nature of the bottom wall heating necessarily involves the Biot number, Bi. Numerical calculations of
the critical Rayleigh number, Rc made over the range of Biot numbers 10�46Bi6 104 for cavity aspect ratios
06 ða; bÞ6 5 cover all effective bottom heating conditions from the constant heat flux global limit, Rc ¼ 27:096 found as
Bi ! 0 to the isothermal global limit, Rc ¼ 4p2 found as Bi ! 1. Marginal stability boundaries, preferred cellular
modes and disturbance temperature contours are displayed graphically.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Many studies of the hydrodynamic stability of fluid-

saturated porous media have been pursued to provide

improved understanding of geothermal flows, the design

of building components for energy conservation, and

other heat transfer processes of engineering interest.

Lapwood [1] first determined the global minimum

Rayleigh number Ramin ¼ 4p2 for fluid in a porous
medium confined between infinite horizontal surfaces

maintained at different uniform temperatures. Beck [2]

was the first to report results for a bounded rectangular

enclosure with insulating sidewalls. The general result of

confinement is flow stabilization, although this effect is

weak when either of the box planform dimensions are

large compared to the box height.

Nield [3] and Ribando and Torrance [4], inter alia,

numerically computed the critical Rayleigh number for

infinite horizontal plates consisting of an isothermal

upper surface and uniform heat flux through the lower
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surface. In particular, Ribando and Torrance [4] noted

that the Rayleigh numbers for an isothermal surface,

denoted here as Ra, and for a constant heat flux surface,
denoted here as fRaRa, are equivalently defined at subcrit-
ical values; consequently their values at onset of con-

vection may be compared directly. The global minimum

value fRaRamin ¼ 27:1 reported for uniform heat flux rep-
resents a 31% reduction of the global minimum value

Ramin ¼ 4p2 for isothermal heating.
Recently, Wang [5] extended the constant heat flux

study to the confined box geometry with insulated

sidewalls. The value fRaRamin ¼ 27:096 reported by Wang
[5] provides a more accurate value compared with those

found in earlier studies. A significant difference between

isothermal and uniform heat flux conditions for the

confined geometry lies in the common period k� of the

doubly periodic spatial grid on which the global mini-

mum values are found. For an isothermal bottom wall

k� ¼ 1:00H , while for a bottom wall with uniform heat
flux the value reported by Wang [5] is k� ¼ 1:35H , where
H is the box height.
Neither uniform temperature nor uniform heat flux

boundary conditions are met in engineering practice,

though close approximations to them may be realized in

controlled laboratory experiments. Use of a variable
erved.
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Nomenclature

a box dimension along the x-coordinate
b box dimension along the y-coordinate
Bi Biot number

C1;2 integration constants

g gravity

h forced convection heat transfer coefficient

H box height

k thermal conductivity of the saturated po-

rous matrix

K permeability of the porous matrix

k1;2 wavenumbers in the x- and y-directions
k unit vector in z-direction
l mode number for an isothermal bottom wall

m, n mode numbers in the x- and y-directions
p pressure

P disturbance pressure

P base state pressure field

q bottom boundary heat flux

R Biot-modified Rayleigh number

Ra constant temperature Rayleigh numberfRaRa constant heat flux Rayleigh number

T temperature

T base state temperature field

DT T1 � T1
u velocity vector

u base state velocity vector

u, v, w velocity components

U , V , W disturbance velocity components

x position vector

x, y, z Cartesian coordinates

Greek symbols

a mp=a
b np=b

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
d thermal expansion coefficient

H disturbance temperature

j thermal diffusivity of the saturated porous

matrix

k spatial period of minimum critical Rayleigh

numbers

l dynamic fluid viscosity

m kinematic fluid viscosity

q fluid density

Subscripts

c critical or marginal value

i indices

min global minimum value

1 top boundary reference condition

1 bottom boundary external ambient condi-

tion

Superscript

� dimensional variable
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heat flux boundary condition involving the Biot number,

Bi, to bridge the gap from uniform temperature to uni-
form heat flux can be traced back (at least) to Carslaw

and Jaeger [6] and was introduced in a study of Ray-

leigh–B�eenard convection of a Newtonian fluid by
Sparrow et al. [7]. This imperfect boundary condition is

sometimes referred to as forced convection heat transfer

or Newtonian heating [8]. In a series of papers spear-

headed by Kassoy and coworkers [9–11], the effects of

imperfect vertical sidewall heating on convection in tall

porous slabs was considered to better understand hy-

drological processes in geothermally active areas. An

electronic search of recent literature suggests that the

latter studies for a vertical slab and that of Lesnic et al.

[8] for a vertical plate are the only porous media inves-

tigations that have incorporated Newtonian heating.

Surprisingly, we find no porous media investigations

that consider imperfect boundary conditions on a hori-

zontal surface, though studies of the preferred pattern of

convection in a porous layer with a spatially nonuniform

bottom surface temperature have been reported; see for

example [12]. In the current investigation we impose the

forced convection Robin boundary condition along the
bottom surface of a rectangular box containing a fluid-

saturated porous medium with isothermal top wall and

insulated sidewalls. A linear stability analysis then pro-

vides the Rayleigh number and mode configuration at

onset of thermal convection for bottom wall thermal

conditions ranging from uniform heat flux, found when

Bi ! 0, to isothermal heating, found in the limit as
Bi ! 1. These calculations provide the basis for future
nonlinear studies involving realistic bottom wall thermal

conditions.

The outline is as follows. From the linearized dis-

turbance equations given in Section 2 we derive the

general eigenvalue equation and its limiting Biot number

forms in Section 3. Numerical results are displayed in

graphical and tabular form in Section 4 and a summary

with concluding remarks are given in Section 5.
2. Problem formulation

Consider a fluid-saturated, uniformly porous ma-

trix of height H and rectangular dimensions a� and b�.
Cartesian coordinates x� ¼ ðx�; y�; z�Þ with velocities



Fig. 1. Bounded fluid-saturated porous medium of height H and rectangular planform dimensions a�, b�. The top surface is main-
tained at constant temperature T �

1 while the bottom surface is heated by forced convection described by the heat transfer coefficient h
and the ambient temperature T �

1. The vertical sidewalls are assumed to be perfectly insulated.
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u� ¼ ðu�; v�;w�Þ are employed, as shown in Fig. 1. The
vertical sidewalls are insulated and the top wall is

maintained at constant temperature T �
1 . The bottom wall

is subjected to Newtonian heating with external ambient

temperature T �
1 and convective heat transfer coefficient h.

The governing equations for conservation of mass,

momentum and energy in the Darcy–Boussinesq ap-

proximation are

$� 	 u� ¼ 0 ð1aÞ

u� ¼ �K
l
f$�p� þ q1g½1� dðT � � T �

1 Þ�kg ð1bÞ

ðu� 	 $�ÞT � ¼ jr�2T � ð1cÞ

where p� and T � are, respectively, the thermodynamic

pressure and temperature; K, the permeability of the
porous matrix; l, the dynamic viscosity of the fluid; q1,
the fluid density at top plate reference temperature T �

1 ; g,
the gravitational acceleration aligned antiparallel to unit

vector k; d, the coefficient of thermal expansion; and j
the thermal diffusivity of the fluid-saturated matrix.

The velocity and thermal boundary conditions are

impermeable walls, adiabatic sidewalls, isothermal top

plate, and a convectively heated bottom surface, viz.

u� ¼ 0 @ ðx� ¼ 0; a�Þ; v� ¼ 0 @ ðy� ¼ 0; b�Þ;
w� ¼ 0 @ ðz� ¼ 0;HÞ

ð2aÞ

oT �

ox�
¼ 0 @ ðx� ¼ 0; a�Þ; oT �

oy�
¼ 0 @ ðy� ¼ 0; b�Þ ð2bÞ

T � ¼ T �
1 @ ðz� ¼ HÞ;

hðT �
1 � T �Þ ¼ �k

oT �

oz�
@ ðz� ¼ 0Þ

ð2cÞ

in which k is the thermal conductivity of the fluid-satu-
rated matrix. The Robin boundary condition at z� ¼ 0 in
(2c) states that the external heat flux delivered to the

fluid-saturated matrix at its lower boundary is q ¼
h½T �

1 � T �ð0Þ�.
Following Wang [5], lengths are normalized with H ,
velocities with j=H , pressure with jl=K, and tempera-
ture with qH=k. The only difference between the present
normalization and that of Wang [5] lies in the definition

of the dimensional heat flux q. In Wang�s problem q was
a constant to be specified, while in the present case q is
calculated from the equation

q ¼ Bi
1þ Bi

� �
kDT �

H
ð3Þ

in which DT � � ðT �
1 � T �

1 Þ > 0 and Bi is the Biot number
defined as

Bi ¼ hH
k

: ð4Þ

Relation (3) is found by eliminating T �ð0Þ in the bot-
tom wall boundary condition (2c) using the linear

temperature profile that exists prior to onset of con-

vection; in this case the bottom wall temperature gra-

dient is identically the uniform base state gradient

DT �=H .
The dimensionless boundary-value problem, written

in terms of a reduced pressure that removes the hydro-

static component is

$ 	 u ¼ 0 ð5aÞ

u ¼ �$p þ RðT � T1Þk ð5bÞ

ðu 	 $ÞT ¼ jr2T ð5cÞ

u ¼ 0 @ ðx ¼ 0; aÞ; v ¼ 0 @ ðy ¼ 0; bÞ;
w ¼ 0 @ ðz ¼ 0; 1Þ

ð5dÞ

oT
ox

¼ 0 @ ðx ¼ 0; aÞ; oT
oy

¼ 0 @ ðy ¼ 0; bÞ ð5eÞ

T ¼ T1 @ ðz ¼ 1Þ; BiðT1 � T Þ ¼ � oT
oz

@ ðz ¼ 0Þ

ð5fÞ
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where a ¼ a�=H and b ¼ b�=H are the planform aspect
ratios. The remaining dimensionless parameter R that
appears in (5b) is the Biot-modified Rayleigh number

R ¼ Bi
1þ Bi

� �
Ra; Ra ¼ KgdDT �H

mj
ð6Þ

where m ¼ l=q1 is the kinematic viscosity of the fluid,
assumed to be constant. Note that Ra is the traditional
porous media Rayleigh number for a cavity with iso-

thermal horizontal plates maintained at uniform tem-

perature contrast DT �.

The conduction base-state solution to the above

equations is

u ¼ 0; P ðzÞ ¼ P1 � 1
2
Rðz� 1Þ2;

T ðzÞ ¼ T1 � ðz� 1Þ:
ð7Þ

Introducing small disturbances ðU; P ;HÞ for velocity,
pressure, and temperature

u ¼ U; p ¼ PðzÞ þ P ðx; y; zÞ;
T ¼ T ðzÞ þ Hðx; y; zÞ

ð8Þ

into Eqs. (5a)–(5c) and neglecting quadratically small

terms yields the linearized disturbance equations

$ 	U ¼ 0; U ¼ �rP þ RHk; W ¼ �r2H: ð9Þ

The disturbance velocity and temperature boundary

conditions obtained from Eqs. (5d)–(5f) are

U ¼ 0 @ ðx ¼ 0; aÞ; V ¼ 0 @ ðy ¼ 0; bÞ;
W ¼ 0 @ ðz ¼ 0; 1Þ

ð10aÞ

Hx ¼ 0 @ ðx ¼ 0; aÞ; Hy ¼ 0 @ ðy ¼ 0; bÞ ð10bÞ

H ¼ 0 @ ðz ¼ 1Þ; BiH � Hz ¼ 0 @ ðz ¼ 0Þ ð10cÞ

where subscripts denote partial differentiation with re-

spect to the subscripted variable.
3. The eigenvalue equation and its limiting forms

Elimination of the vertical velocity W in Eq. (9) gives

r4H þ RðHxx þ HyyÞ ¼ 0 ð11aÞ

with original and deduced sidewall boundary conditions

Hx ¼ Hxxx ¼ 0 @ ðx ¼ 0; aÞ;
Hy ¼ Hyyy ¼ 0 @ ðy ¼ 0; bÞ

ð11bÞ

and top and bottom wall boundary conditions

r2H ¼ H ¼ 0 @ ðz ¼ 1Þ;
r2H ¼ BiH � Hz ¼ 0 @ ðz ¼ 0Þ:

ð11cÞ

A separable solution satisfying sidewall boundary con-

ditions (11b) is

Hðx; y; zÞ ¼ cos ax cos byF ðzÞ ð12Þ
where a ¼ mp=a and b ¼ np=b. Substitution of (12) into
(11a) furnishes the eigenfunction equation

d2

dz

�
� c2

�2
F ðzÞ ¼ 0 ð13Þ

in which c2 ¼ a2 þ b2. The general solution for F ðzÞ
satisfying the z ¼ 1 boundary condition (11c) is
F ðzÞ ¼ C1 sinh½k1ðz� 1Þ� þ C2 sin½k2ðz� 1Þ� ð14Þ

where the constants C1 and C2 are arbitrary and

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

ffiffiffi
R

p
þ c2

q
; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

ffiffiffi
R

p
� c2

q
: ð15Þ

Application of the z ¼ 0 boundary conditions (11c) then
yields the eigenvalue equation

sin k2½Bi sinh k1 þ k1 cosh k1�
þ sinh k1½Bi sin k2 þ k2 cos k2� ¼ 0 ð16Þ

depending explicitly on three parameters: Bi, R and c.
Eq. (16) is valid only for R > c2; a different equation
appears when R < c2, but it has no real solutions.

3.1. The large Biot number limit

In the limit of large Bi it is clear that

lim
Bi!1

R ¼ lim
Bi!1

Bi
1þ Bi

� �
Ra ¼ Ra

so the Biot-modified Rayleigh number approaches the

classical Rayleigh number for differentially heated hor-

izontal plates. In this case Eq. (16) reduces to the simple

form

2 sinh k1 sin k2 ¼ 0 ð17Þ
and since k1 6¼ 0, except for the trivial case c2 ¼ 0, the
eigenvalue equation is simply sinðk2Þ ¼ 0 with solutions
for positive k2 given by k2 ¼ lp ðl ¼ 1; 2; 3; . . .Þ. Using
the definition for k2 in Eq. (15) yields the eigenvalue
relation obtained by Beck [2]

Ra ¼ c

�
þ l2p2

c

�2
: ð18Þ

The global minimum value of Ra, found at l ¼ 1 and
c ¼ p, is Rac ¼ 4p2 and these values are located on a
doubly periodic planform grid of common spatial period

k ¼ 1:0 emanating from, but excluding, a ¼ b ¼ 0.

3.2. The small Biot number limit

For vanishingly small values of Bi one obtains

lim
Bi!0

R ¼ lim
Bi!0

Bi
1þ Bi

� �
Ra ¼ BiRa ¼ fRaRa:

In this limit the Biot-modified Rayleigh number R rep-
resents the Rayleigh number fRaRa for a constant heat flux
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bottom wall. Moreover, for vanishingly small Bi, Eq.
(16) reduces to the eigenvalue relation obtained by

Wang [5]

k1 cosh k1 sin k2 þ k2 sinh k1 cos k2 ¼ 0: ð19Þ

It is not possible to solve analytically for the global

minimum value fRaRamin for this transcendental equation.
However, Wang [5] numerically found the valuefRaRamin ¼ 27:096. He also computed the spatial period
k ¼ 1:35 of the planform grid on which the global
minimum values are found.
4. Results

Eq. (16) is an eigenvalue equation of the form

FðR;Bi; a; b;m; nÞ ¼ 0

that may be evaluated over all modes (m; n) for deter-
mining critical values Rc at fixed values of a; b and Bi.
We define Rmin as the global minimum value of Rc for
each fixed value of Bi. In this large parameter space we
confined the search to selected values of Biot number in

the range 10�46Bi6 104 covering a fine grid of aspect
ratios in the range 06 ða; bÞ6 5. Figs. 2–4 display the
planform variation of Rc for Bi ¼ 10�4, 1, and 104
plotted both as three-dimensional surface plots and their
Fig. 2. Critical stability results for Bi ¼ 10�4 for which Rmin ¼ 27:098
the ða; bÞ-plane, (c) spatial distribution of preferred m-modes, and (d)
two-dimensional projections in ða; bÞ-space. The spatial
domains of preferred modes m and n are also displayed.
The projected contours in Fig. 2(b) and the preferred-

mode domains in Fig. 2(c) and (d) for Bi ¼ 10�4 are in
close agreement with the corresponding results given in

Figs. 1 and 2 of Wang [5]. The value Rmin ¼ 27:098 ob-
tained is only slightly higher than the value 27.096 re-

ported by Wang [5] valid for the exact limiting case of

uniform heat flux obtained as Bi ! 0. Similarly, the
projected contours in Fig. 4(b) and the distribution of

preferred modes in Fig. 4(c) and (d) for Bi ¼ 104 are
virtually identical to the isothermal bottom wall results

given respectively in Figs. 3 and 2 of Beck [2]. The value

Rmin ¼ 39:475 obtained here is only slightly lower than
the value of 4p2 ¼ 39:478 given by Lapwood [1] for the
isothermal wall limit. The results in Fig. 3 computed at

Bi ¼ 1 represent an intermediate situation far removed
from the idealized bottom wall boundary conditions

studied previously. One can easily observe the increasing

complexity of the surface distributions of Rc with in-
creasing Bi. This is reflected in the increased frequency
of mode transitions along the a- and b-axes and along
the planform diagonal as Bi varies from the constant
heat flux limit to the isothermal limit.

Perhaps the best way to interpret the effect of

changing the bottom wall boundary condition is to

follow the evolution of disturbance isotherms for a given
: (a) marginal stability surface, (b) projection of Rc surface onto
spatial distribution of preferred n-modes.



Fig. 3. Same as Fig. 2, but Bi ¼ 1 for which Rmin ¼ 30:269.

Fig. 4. Same as Fig. 2, but Bi ¼ 104 for which Rmin ¼ 39:475.
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box geometry as a function of Bi. A short calculation
shows that the disturbance temperature field is propor-

tional to

Hðx; y; zÞ ¼ cos ax cos by½sin k2 sinhfk1ðz� 1Þg
þ sinh k1 sinfk2ðz� 1Þg�: ð20Þ

The results presented in Fig. 5 exhibit top and bottom

oblique views of disturbance temperature contours for a

square box of dimensions a ¼ 3 and b ¼ 3�; this corre-
sponds to the example presented in Fig. 3(a) of Wang

[5]. In Fig. 5 hot and cold fluid regions are represented

by light and dark shaded areas, respectively. For Bi ¼
10�4 (Fig. 5(a) and (b)) the preferred modes are m ¼ 2
and n ¼ 1 and the disturbance isotherm patterns are
virtually identical to those of Wang [5] for constant heat

flux at the bottom wall. The isotherms in Fig. 5(b)

clearly reveal the three-dimensional nature of the ther-

mal field showing hot and cold spots on the bottom wall.

For Bi ¼ 1 (Fig. 5(c) and (d)) the preferred modes flip to
Fig. 5. Top (left column) and bottom (right column) oblique views of

square planform a ¼ 3, b ¼ 3�. Subplots (a) and (b) are for Bi ¼ 10�4
(d) are for Bi ¼ 1 where Rmin ¼ 30:269 with preferred modes m ¼ 1
preferred cellular modes m ¼ 3, n ¼ 0.
m ¼ 1 and n ¼ 2. Notice the lightest and darkest closed
isotherm regions have moved off the bottom wall and

reside entirely on the vertical insulated faces. The pre-

ferred modes m ¼ 3 and n ¼ 0 for Bi ¼ 104 (Fig. 5(e) and
(f)) represent a profound change in structure to parallel

rolls aligned with the y-axis. The oblique bottom views
of the box in Fig. 5(b), (d), and (f) are particularly in-

structive as they show the bottom wall disturbance

temperature field evolving from the variable pattern of

high horizontal spatial gradients for m ¼ 2 and n ¼ 1
through a pattern of weaker spatial gradients at m ¼ 1
and n ¼ 2, to the zero gradient isothermal surface with
roll system m ¼ 3 and n ¼ 0. Moreover, it is clear the
local hot spots on the bottom wall giving rise to vertical

plumes can exist only at small Biot numbers that con-

form closely to a bottom wall condition of uniform heat

flux.

The fundamental effect of increasing Bi from the
uniform heat flux limit is one of stabilization. The onset

of convection is marked by continuously increasing
disturbance temperature isotherms at onset of convection for a

where Rmin ¼ 27:098 with preferred modes m ¼ 2, n ¼ 1; (c) and
, n ¼ 2; (e) and (f) are for Bi ¼ 104 where Rmin ¼ 39:475 with
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values of Rmin displayed in Fig. 6. Here we find that
significant deviations (>0.05) from the prescribed heat

flux limit fRaRamin and the isothermal limit Ramin are ef-

Table 1

Global critical Rayleigh numbers Rmin and their periodic spac-
ings k computed at selected values of Bi

Bi Rmin k

0.0001 27.098 1.350

0.001 27.102 1.350

0.01 27.142 1.348

0.03 27.230 1.343

0.05 27.316 1.339

0.1 27.526 1.328

0.2 27.921 1.308

0.3 28.287 1.291

0.5 28.945 1.261

0.7 29.522 1.238

1.0 30.269 1.209

1.5 31.278 1.174

2.0 32.078 1.149

3.0 33.274 1.116

5.0 34.776 1.080

6.0 35.281 1.069

8.0 36.021 1.055

10 36.538 1.045

15 37.338 1.031

20 37.795 1.024

30 38.298 1.016

50 38.740 1.010

70 38.941 1.007

100 39.097 1.005

150 39.221 1.003

300 39.348 1.001

1000 39.439 1.000

10,000 39.475 1.000
fectively confined to the Biot number range 0:01 <
Bi < 1000 where the mid-point of transition is very close
to Bi ¼ 3. Computed values of Rmin and the corre-
sponding spatial periods, k at selected values of Bi are
given in Table 1.
5. Discussion and conclusion

The effect of imperfect bottom heating for a confined

fluid-saturated porous medium has been examined. The

thermal condition at the lower boundary is characterized

by a Biot number measuring the effectiveness of external

forced convection. At small, nonzero values of Bi the
bottom wall heating is nearly one of uniform heat flux.

In this case the well defined disturbance temperature

distribution along the bottom boundary is intimately

connected to the horizontal cellular structure. The bot-

tom surface however, ultimately becomes an insulated

surface when Bi � 0. In the other extreme, when Bi be-
comes large, the forced convective heating from the

ambient temperature T �
1 is so effective that the bottom

wall is essentially an isothermal boundary at that tem-

perature. In this case the bottom boundary disturbance

temperature field is no longer linked to the horizontal

structure of the cells.

The disturbance isotherm plots in Fig. 5 are partic-

ularly revealing. Elevating the Biot number from low

values corresponding to uniform bottom wall heat flux

to high values corresponding to uniform bottom wall

temperature exhibits profound changes in both the

preferred modal structure of convection and in the ex-

istence and disappearance of thermal plumes. At low Bi
hot and cold spots appear at the junction of the vertical

walls to the bottom surface and large thermal gradients
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exist on both surfaces. As Bi increases, the bottom wall
thermal gradients become progressively weaker as bot-

tom wall hot and cold spots migrate continuously to the

vertical sidewalls. At high Bi, hot and cold spots can
exist only on the vertical sidewalls since the bottom wall

tends to an isothermal surface.

This study of forced convective heating of the bottom

boundary provides realistic engineering results for the

onset of convection in, and heat transfer across, a con-

fined fluid-saturated porous medium of rectangular box

geometry at onset of convection. Indeed, all of the glo-

bal minima are found in the region 27:096 < Rmin <
39:478 but the actual values Rc depend strongly on the
planform aspect ratios, especially at low values of a and
b. The spatial period k of the global minimum values
found on a rectangular grid in ða; bÞ-space decreases
with increasing Bi. This decrease in spatial period signals
the increased complexity of the cellular structure distri-

butions shown in Figs. 2(d), 3(d), and 4(d).

Extensions of this study are numerous. One referee

suggested inclusion of imperfect top wall cooling. This

would involve a second independent Biot number

thereby doubling the parameter space of the problem.

One can also envision replacing the vertical insulated

walls with imperfectly heated or cooled walls which

would introduce yet another independent Biot number.

Finally, one may consider each vertical wall exposed to

different imperfect heating environments which would

break the symmetry of solutions in a box of square

planform and greatly increase the parameter space of

study. This latter situation is one of general engineering

interest. Another problem of considerable engineering

interest is the onset of convection in a fluid-saturated

porous medium confined in a circular cylinder with axis

parallel to gravity. The general situation would be im-

perfect bottom, top and sidewall heating involving three

independent Biot numbers. Solutions of the special case

involving imperfect bottom wall heating with isothermal

top wall and insulated cylindrical sidewall would provide

a continuous bridge across the gap between the uniform

temperature bottom wall study of Zebib [13] and the

uniform heat flux bottom wall study of Wang [14].
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